- 97663
UCRL-
PREPRINT

A NEW APPROACH TO EXCLUSIVE DATA ACCESS IN
SHARED MEMORY MULTIPROCESSORS

Eric H. Jensen
Gary W. Hagensen
Jeffrey M. Broughton

Scehmetia!
This paper was prepared for sumibttad to
The 15th Annual International Symposium on
Computer Architecture
Honolulu, Hawai:
May 30 - June Z, .988

November 13, 1987

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represerits that
its use would not infringe privately owned rights. Reference herein to any
specific commercial products, process, or:' service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement recommendation or favoring of the United States
Government or the University of Califcrnia. The views and opinions of
authiors expressed herein do not necessarily state cr reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsermen” Jurposes.

A New Approach to Exclusive Data Access in Shared Memory

Multiprocessors

Eric H. Jensen
Gary W. Hagensent

Jeffrey M. Broughion

S-1 Project
Lawrence Livermore National Laboratory

Livermore, California 94550

Abstract

Optimistic synchronization, a new mechanism to provide exclusive data access in a shared memory
multiprocessor has been developed. This mechanism has been implemented in the S5-1 AAP
multiprocessor. Optimistic synchronization is a generalization of the traditional conditional store
instruction. The latency required to determine the ‘‘equality’’ condition 1n the conditional store is exposed
to the compiler. This simplifies pipeline control for RISC-like designs and allows the latency inherent in a
complex coherency protocol or a complex processor interconnect to be absorbed by concurrent instruction

execution. In addition, optimistic synchronization eliminates the need for auxiliary lock variables in some

cases.

Introduction

A shared memory multiprocessor system must provide exclusive data access mechanisms. These

mechanisms are used to develop synchronization primitives that can be used by concurrent processes to

1This author is now at MIPS Computer Systems, Sunnyvale, CA.

S92

enforce order and/or consistency when accessing shared data The conventional uniprocessor approach of'
masking interrupts is not sufficient to ensure exclusive shared data access in a multiprocessor environment.
Previous multiprocessor approaches involve locking some global hardware resource. These approaches fall
primarily into two classes. The first provides instructions which explicitly lock or unlock a hardware
resource. The Am29000 load! and storel instructions are an example.!-? The second provides indivisible
operations such as test-and-ser® or conditional_store*> (also called compare-and-swap).7 These lock a

hardware resource only for the duration of their execution.

The S-1 Advanced Architecture Processor (AAP) introduces a new approach to exclusive access
called optimistic synchronization. In its simplest form, an interruptable sequence of instructions attempts
an ‘“‘atomic’’ modification of a variable under the presumption of exclusive access. The operation

completes successfully only if the exclusive access presumption can be verified and no interrupts occur.

This approach is analogous to optimistic concurrency control® in database transactions and arises

from a generalization of the semantics of the wraditional conditional_store instruction.

Conditional_store

The conditional_store instruction typically executes the following code fragment atomically:3

sample < MemFetch(ptr];

if sample = old then MemStore[ptr,new];
New replaces old if and only if the value referenced by prr is the same as old. A condition code is set 7 or
the value of sample is left in a register® so that the success or failure of the conditional can be determined
by a subsequent operation. This permits a function to read a location, compute a new value for that
location and store the new value if the contents of the location have not changed. If the contents of the
location have changed then the new value will be discarded .nd the computation can be repeated. The

function presumes exclusive access to the memory location while it is computing a new value.

-3

This use of conditional store is based on the observation that the ability to detect the violation of
exclusive access to a memory location is sufficient to obtain exclusive accesy provided that the rate of
concurrent access is low. Concurrent access is defined as any overlap during the time that more than one

processor is presuming exclusive access to the same memory location

Optimistic Synchronization

Optimistic synchronization is accessed through the sync load and sync_store instructions. In
addition, the S-1 AAP provides a third instruction, sync_clear, which is a degenerate form of sync_store.
A processor is in a presumed exclusive access region during the interval between the execution of a
sync_load instruction and the execution of either a sync_store or a sync clear instruction. A processor will
trap if two sync_loads are executed without an intervening sync_store or sync_clear. This trap is due to

restrictions imposed by the implementation.

The sync_load instruction computes xa-address (an effective address), declares that the executing
processor is presuming exclusive access to a synchronization block containing xa-address and loads the
addressed data into a general register. The synchronization block may be larger than the data item
referenced by xa-address. Loading the data item referenced by xa-address is merely a convenient side-

effect; a separate load could be executed after the sync_load instruction.

The sync_store instruction:

1) conditionally stores an item of data to memory. Only if the presumption of exclusive access to
xa-address is valid does the store occur, in which case the sync_store is said to be successful.
The effective address computed by the sync_store :nstruction may be distinct from xa-address.
If this address is different than xa-address, it can not be the xa-address of a concurrently

executed sync_load.

2) alters program flow based on whether or not the sync_store is successful. In the S-1 AAP, the

_4-

instruction following the sync store instruction is skipped if the sync_store is successful.’
Alternatively a condition code or general register could be set for use by a conditional branch.
The ability to alter program flow is necessary in order to retry the sync load/sync store
sequence when the exclusive access presumption s invalid.

3) terminates the presumed exclusive access region

If a sync_store executes outside a presumed exclusive access region (no prior matching sync load

executed), it executes like an unsuccessful sync_store.

Determining the validity of the exclusive access presumption and storing data on the basis of that
determination must be performed indivisibly. An instruction that only determines the validity of the
exclusive access presumption is useless. If an exception occurs between the validity test and the store, the
test may be invalid when the store executes. Thus the sync store instruction is like a conditional store,

except that the equality computation and possibly the store address are different.

The sync_clear instruction terminates a presumed exclusive access region but does not store any
data or alter program flow. It is a semantic convenience used when a program decides to abort a presumed

exclusive access region. If a sync clear executes outside a presumed exclusive access region (no prior

matching sync_load executed), it has no effect.

Coded Example

The following code sequence illustrates one use of optimistic synchronization. The variable lock is

locked when non-zero. The jump q instruction executes the following instruction only if the branch

condition is true.

IF (lock = 0) THEN lock := ProcessID * indivisible operation */
ELSE GOTO LockHeld;
Retry: sync_load R10, lock , declare x-access presumption on lock

jump q .neq (R10, 0), LockHeld ; test for zero
sync_clear - lock non-zero, abort x-access

load R10, ProcessID , prepare to update lock

sync_store R10, lock . update lock if x-access presum. true
goto Retry try the update again

MyLock:

Assume lock has a non-zero value. The sync_load will load that value into register 10 and declare
that this processor is presuming exclusive access to lock (xa-address). The jump_q instruction will detect
that lock has a non-zero value, the sync_clear instruction will be executed and control will transfer to the
label LockHeld elsewhere in the program. The sync_clear will declare that exclusive access to xa-address

(indicated implicitly) is no longer presumed, terminating the presumed exclusive access region.

Now assume that lock has a zero value. The sync_load instruction will load that value into register
10 and declare that this processor is presuming exclusive access to lock (xa-address). The condition in the
jump_q instruction will be false and ProcessID will be loaded. The sync_store instruction is executed next
and may stall waiting for the verification of exclusive acces: to xa-address. 1If exclusive access to xa-
address has been verified, then lock is updated to Process/D and execution continues at label MyLock. If
exclusive access to xa-address can not be verified then lock will not be updated, the goto will be executed
transferring control to label Retry, and the sync load instruction will be reissued. The sync_store will

declare that exclusive access to xa-address is no longer presumed. terminating the presumed exclusive

access region.

‘The use of sync load and sync_store instead of a conditional store does not create a longer code

sequence. If conditional store were used it would replace the sync_store, and the sync_load would become

a normal load instruction.

The programmer or compiler must use the sync_load and sync store instructions consistently, as

they are incompatible with the normal load and store instructions.

Deadlock Avoidance

Allowing a non-privileged process explicitly to lock a hardware resource for an unlimited length of
time can have grave consequences. Problems can arise when an external event occurs that suspends a
non-privileged process holding an active lock. A process that is required to cope with the external event
may need to access the locked resource. For this reason, actions or instructions that lock or unlock a

hardware resource (e.g. masking interrupts) have traditionally been placed under the strict control of the

operating system kernel.

Because limited sync_load and sync_store hardware resources may be used by an unlimited number
of active processes, the processor must execute a sync_clear instruction when switching contexts. This
resets the processor state for optimistic synchronization so that the new or resumed context can execute
safely. When a process that was suspended in a presumed exclusive access region is resumed, its first
execution of sync_store (to terminate the suspended presumed exclusive access region) will fail. However,
when the optimistic synchronization code is re-executed without an intervening context switch, it will
succeed if the exclusive access presumption is valid. [t i+ this property that allows non-privileged

processes direct access to optimistic synchronization.

It is unsafe to invoke code which uses optimistic synchronization from within an exclusive access
region. This will result in a trap (two consecutive sync loads) or a livelock® condition. A livelock
condition occurs when the invoked code executes a sync _clear resetting the processor state for a separate
use of optimistic synchronization. The sync_store in the invoking code will always fail. Most kernel calls

within a presumed exclusive access region will create a livelock condition because of their use of

optimistic synchronization.

Locking Data Instead of Locks

Typically, lock variables are associated with shared data. When a lock variable is obtained through a
indivisible operation (e.g. test-and-set) exclusive access to the associated shared data is established by
convention. The permission to sync_store to a different address than xa-address allows the elimination of
lock variables in some cases. If only one data item is to be computed from a set of data, a convention to
sync_load one data item to define exclusive access over the entire data set could be established. The
sync_store will install the new computed value if the exclusive access presumption is valid. If the
sync_store references a non-resident memory page, it will fail because of the necessary context switch.
When the memory page is resident and the optimistic synchronization code is re-executed, the sync_store

will succeed if the exclusive access presumption is valid.

Violating Exclusive Access

Conditional_store uses a straightforward equality test to determine when exclusive access has been

violated. It is more convenient for optimistic synchronization to detect another processor’s intention to

write xa-address.

This section will address the problem of detecting an intention to write a memory location when
there are multiple copies of that location. This problem is evident in the presence of caches, each of which

may contain a copy of a shared memory location. In the absence of multiple copies, it is straightforward to

detect a write to a memory location.

Most cache coherency protocols rely on a notion of write ownership to insure exclusive access. The
protocols range from invalidating other cache copies when a write occurs, to broadcasting updates after
sole write access has been obtained.? When using these protocols, the detection of an invalidation or loss of
sole write access during the interval between the execution of sync_load and the execution of sync_store

can identify an intention to write.

-8 -

The S-1 AAP cache coherency protocol does not have a notion of sole write access. !0 Instead, writes

are propagated to every interested cache even if they occur simultaneously. A processor’s cache is
considered interested in a write only if it contains a copy of the written memory location (propagating

writes to non-interested caches only wastes cache cycles). The writer knows when all interested caches

have been updated.

When a sync_load is executed, a query is sent to all interested caches. The query asks are-you-
presuming-exclusive-access-to-this-synchronization-block? and a response of yex or no is returned. A
processor only responds yes if it is in a presumed exclusive access region that refers to the same
synchronization block. Any yes response will invalidate the exclusive access presumption and a
subsequent sync_store will fail. If any query is outstanding (the S-1 AAP only sends out one query that is
propagated from cache to cache) when the sync store executes, the sync store will stall until every
response is received. If there are no other interested caches, a query is not necessary. The performance

gain due to this situation is suggested by the Dragon processor experience.”

The querying processor must also service queries from other processors. It responds with yes to those
queries that refer to the same synchronization block until the exclusive access presumption is known to be
false or the presumed exclusive access region is terminated. When two or more processors are
simultaneously querying each other about the same synchronization block, their exclusive access
presumptions are invalidated. System performance may be enhanced if an arbitrary priority scheme is
applied when this situation is detected so that one processor is permitted exclusive access. The S-1 AAP

uses the processor ID to resolve this situation.

Writes to xa-address also invalidate the exclusive access presumption. This can occur when a
sync_store to xa-address is propagating to interested caches while a sync_load from xa-address 1s executed
on a different processor. The location at xa-address will be written (invalidating the copy in a general

register’ while the query will get a no response. The requirement to detect writes can be dropped if

-9.-

messages between interested caches maintain strict relative ordering and a processor responds yes to the

appropriate queries until a successful sync_store updates all interested caches.

Simpler Pipelines

The conditional _store has a hidden latency when executed in a sole write access environment. The
conditional store may have to stall while sole write access is obtained. The equivalent latency in
optimistic synchronization is due to the sync load query. However, this latency can be partially, and

sometimes totally, overlapped with the execution of instructions in the presumed exclusive access region.

The conditional_store can add complexity to a RISC-like pipeline because of the necessary read-
modify-write cycle. This is complicated by the internal branch imposed by the conditional sample = old.
Optimistic synchronization separates the read and write into two instructions and allows the computation of

the conditional to be independent of the primary pipeline.

Granularity

Making the synchronization blocks larger than the data referenced by xa-address is equivalent to
hashing the units of exclusive access on the high-order bits of xa-address. This will cause collisions when
concurrent sync_load instructions reference different items of data in the same synchronization block,
although the collisions may have little or no affzct on system performance. The choice of synchronization
block size is left to a particular implementation. If the temporal concurrency of presumed exclusive access

regions is expected to be very low, a single global synchronization block could be provided.

The global address space for most machines is the physical address space. If synchronization blocks
are determined by the high-order bits of xa-address, a virtual to physical address translation of xa-address

is required to resolve sync load queries. Because the S-1 AAP has physically addressed caches, this does

not represent an additional cost.

210 -

For systems in which virtual to physical address translation for sync loads is difficult, an alternative
hashing scheme would be to hash synchronization blocks on the low-order bits of xa-address. If the
number of low-order bits used is equal to or less than the number of bits needed to represent a memory
page, a virtual to physical address translation can be avoided. This will result in a smaller number of
synchronization blocks, but references will be more evenly distributed. This approach can be used when
the cache hardware is inaccessible or inappropriate. Providing separate dedicated silicon to manage

synchronization blocks would allow the use of existing processors. The Sequent SLIC!! chip suggests the

viability of this approach.

The choice of synchronization block size is equally applicable to both conditional storing and

optimistic synchronization.

Conclusion

Optimistic synchronization is a generalization of the conditional store instruction. The latency
required to determine the ‘‘equality’’ condition in the conditional store is exposed to the compiler. This
simplifies pipeline control for RISC-like designs and allows the latency inherent in a complex coherency
protocol or a complex processor interconnect to be absorbed by concurrent instruction execution. In

addition, optimistic synchronization eliminates the need for auxiliary lock variables in some cases.

Acknowledgement

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore Nation-
al Laboratory under contract number W—7405-ENG—48 with support from the Office of Naval Technolo-
gy.

References

1. Brian Case, ‘‘Pipelined Processor Pushes Performance,”” £SD, Digital Design Publishing Corp.,
March 1987.

2. Am29000 Streamlined Instruction Processor, Advance Information 09075A, Advanced Micro
Devices, February 1987.

3. IBM System/360 Principles of Operation, pp. 74-75, 1BM Systems Development Division,
November 1970.

10.

11.

S11 -

L. C. Widdoes, “‘S-1 Multiprocessor Architecture,”” 1979 Annual Report — The S-1 P‘roject,

Volume 1: Architecture, Lawrence Livermore National Laboratory Technical Report UCID 18619,
1979.

Russel R. Atkinson, Edward M. McCreight, ‘‘The Dragon Processor,”’ ASPLOS II Proceedings, no.
556870, pp. 65-69, ACM, October 1987,

Motorola Inc., MC68020 32-Bit Microprocessor Users Manual, pp. B-54, Prentice Hall, 1985.

Richard P. Case, Andris Padegs, ‘‘ Architecture of the (BM System 370.”” Comm. ACM, vol. 21, no.
1, pp. 73-96, January 1978.

Jeffery D. Ullman, Principles of Database Systems, 2nd ed., pp. 400-405,439-443, Computer Science
Press, 1982.

Philip Bitar and Alvin M. Despain, ‘‘Multiprocessor Cache Synchronization — Issues, Innovations,

Evolution,”” Proceedings, 13th Annual Symposium on Computer Architecture, pp. 424-433, June
1986.

S-1 Project, Cache Coherency on the S-1 AAP, Lawrence Livermore National Laboratory, November
1987.

Bob Beck, Bob Kasten, and Shreekant Thakkar, ‘“VLSI Assist For A Multiprocessor,”” ASPLOS II
Proceedings, no. 556870, pp. 10-20, ACM, October 1987,

